Equations for Alcohol Dilution Calculators

Introduction to the Science and Math

This article details the derivation of equations used in the Alcohol Dilution Calculators

When alcohol (isopropanol or ethanol) and water are combined, the mass is conserved but the volume is not:

Total mass = mass of alcohol + mass of water
Total volume ≠ volume of alcohol + volume of water

Resulting volume is not equal to the sum of individual volumes. Because of the change in volume, computing for the total volume using the individual mass and density of pure alcohol and pure water will produce a degree of error in the answer (up to ~3.5%) for the final volume.

Detailed alcoholometric tables are available for ethanol which provide density values at various w/w and v/v concentrations for a wide range of temperatures. Tables for isopropanol are rare and density values are available only for a few temperatures, thus some values need to determined via interpolation and extrapolation.

To produce algorithms for the alcohol dilution calculators, these alcoholometric tabular data (and derived data such as v/v concentration in terms of w/w concentration) were entered into a polynomial regression analysis calculator to obtain polynomial equations with coefficients of determination \( R^2 \) > 0.9999, providing continuous computed values for 1. density as a function of w/w concentration at five different temperatures, and 2. w/w concentration as a function of v/v concentration for the same five temperatures.

Caveat: For the polynomial regression equations used in the calculators, alcohol concentration has been limited to the range of 30% to 100%w/w, which translates to 36% to 100%v/v. A lower bound of around 40%v/v should cover most ordinary (non-food) purposes for which isopropanol and ethanol aqueous solutions are used. Limiting the range of concentration lowers the standard deviation of the polynomial regression equations.

Terms and Abbreviations
Term used in this page Term used in the calculators page
init-sol initial alcohol-water solution
(alcohol to be diluted)
concentrated alcohol
fin-sol final alcohol-water solution
(alcohol + added water)
diluted alcohol
v/v volume/volume v/v
w/w weight/weight w/w
conc. concentration
temp. temperature
Nomenclature
Symbol Description Units
\( C_{V,t} \) v/v conc. of alcohol-water solution at temp. \( t \) decimal
\( C'_{V,t} \) v/v conc. of init-sol at temp. \( t \) decimal
\( C''_{V,t} \) v/v conc. of fin-sol at temp. \( t \) decimal
\( C_{m,t} \) w/w conc. of alcohol-water solution at temp. \( t \) decimal
\( C'_{m,t} \) w/w conc. of init-sol at temp. \( t \) decimal
\( C''_{m,t} \) w/w conc. of fin-sol at temp. \( t \) decimal
\( V'_t \) volume of init-sol at temp. \( t \) liters
\( \rho'_t \) density of init-sol at temp. \( t \) kg/liter
\( m'_t \) mass of init-sol at temp. \( t \) kg
\( V''_t \) volume of fin-sol at temp. \( t \) liters
\( \rho''_t \) density of fin-sol at temp. \( t \) kg/liter
\( m''_t \) mass of fin-sol at temp. \( t \) kg
\( V_{100\%,t} \) volume of 100% alcohol at temp. \( t \), (liters) liters
\( \rho_{100\%,t} \) density of 100% alcohol at temp. \( t \) kg/liter
\( m_{100\%,t} \) mass of 100% alcohol at temp. \( t \) kg
\( V_{H2O,t} \) volume of added water at temp. \( t \) liters
\( \rho_{H2O,t} \) density of water at temp. \( t \) kg/liter
\( m_{H2O,t} \) mass of added water at temp. \( t \) kg

Derivation of the Equations

The Principal Problem

Because of the change in volume when alcohol and water are combined, the volume of fin-sol is—for common, practical concentrations and dilutions —less than the sum of the volume of init-sol and the volume of added water: $$ V''_t \lt V'_t + V_{H2O,t} $$ Volumes must therefore be determined empirically and values computed using concentration and density data from alcoholometric tables.

Definitions

Mass of fin-sol is the sum of the mass of init-sol and mass of added water: $$ m''_t = m'_t +m_{H2O,t} $$

Alcohol w/w concentration of init-sol is the ratio of the mass of 100% alcohol to mass of init-sol: $$ C'_{m,t} = \frac {m_{100\%,t}} {m'_t} \tag{1} $$

Alcohol w/w concentration of fin-sol is the ratio of the mass of 100% alcohol to mass of fin-sol: $$ C''_{m,t} = \frac {m_{100\%,t}} {m''_t} \tag{2} $$

Alcohol v/v concentration of init-sol is the ratio of the volume of 100% alcohol to volume of init-sol: $$ C'_{V,t} = \frac {V_{100\%,t}} {V'_t} \tag{3} $$

Alcohol v/v concentration of fin-sol is the ratio of the volume of 100% alcohol to volume of fin-sol: $$ C''_{V,t} = \frac {V_{100\%,t}} {V''_t} \tag{4} $$

Density

Density \( \rho \) is defined as \( \frac{mass}{volume} \)

Therefore, the masses of init-sol and fin-sol are: $$ m'_t = \rho'_t V'_t \tag{5} $$ $$ m''_t = \rho''_t V''_t \tag{6} $$

Thus the volumes of init-sol and fin-sol are: $$ V'_t = \frac {m'_t}{\rho'_t} $$ $$ V''_t = \frac {m''_t}{\rho''_t} $$

The density of 100% alcohol is given by: $$ \rho_{100\%,t} = \frac {m_{100\%,t}} {V_{100\%,t}} \tag{7} $$

The density of water is given by: $$ \rho_{H2O,t} = \frac {m_{H2O,t}} {V_{H2O,t}} $$

Mass of 100% Alcohol in Init-Sol and Fin-Sol

From Eq.1 we get: $$ m_{100\%,t} = m'_t C'_{m,t} $$ and from Eq.2 we get: $$ m_{100\%,t} = m''_t C''_{m,t} $$ Therefore: $$ m'_t C'_{m,t} = m''_t C''_{m,t} \tag{M1} $$ In other words, the mass of 100% alcohol in both init-sol and fin-sol are equal

Substituting using Eq.5 and Eq.6 we obtain: $$ \rho'_t V'_t C'_{m,t} = \rho''_t V''_t C''_{m,t} \tag{M2} $$

Volume of 100% Alcohol in Init-Sol and Fin-Sol

From Eq.3 we get: $$ V_{100\%,t} = V'_t C'_{V,t} $$ From Eq.4 we get: $$ V_{100\%,t} = V''_t C''_{V,t} $$ Therefore: $$ V'_t C'_{V,t} = V''_t C''_{V,t} $$ In other words, the volume of 100% alcohol (that is, pure alcohol if extracted from the solution) in both init-sol and fin-sol are equal.

Finding w/w Concentration of Fin-Sol

In Calculator B only \( C'_{m,t} \) is available from the user. However, both \( C'_{m,t} \) and \( C''_{m,t} \) are necessary in order to calculate \( \rho'_t \) and \( \rho''_t \), respectively. All four variables are in turn necessary to calculate the various masses and volumes.

In Calculator B the givens are as follows:

  1. v/v concentration of alcohol to be diluted
  2. desired weight or volume of the alcohol to be diluted
  3. desired weight or volume of water to be added

From Eq.M1 we get: $$ C''_{m,t} = \frac {m'_t C'_{m,t}} {m''_t} $$

Since $$ m''_t = m'_t + m_{H2O,t} $$ we have: $$ C''_{m,t} = \frac {m'_t C'_{m,t}} {m'_t + m_{H2O,t}} \tag{B1} $$

Since $$ m'_t = \rho'_t V'_t $$ and $$ m_{H2O,t} = \rho_{H2O,t} V_{H2O,t} $$ we have the equivalent equation: $$ C''_{m,t} = \frac {\rho'_t V'_t C'_{m,t}} {\rho'_t V'_t + \rho_{H2O,t} V_{H2O,t}} \tag{B2} $$

Eq.B1 and Eq.B2 allow the use of either mass or volume or combinations thereof of init-sol and added water

For the following equations, it is assumed that \(C'_{m,t} \) and \( C''_{m,t} \) are already known, with \(C'_{m,t} \) having been computed via a polynomial regression equation (see below) and \(C''_{m,t} \) having been computed via a regression equation or through Eq.B1 or Eq.B2. Furthermore, with \(C'_{m,t} \) and \( C''_{m,t} \) already known, \( \rho'_t \) and \( \rho''_t \) will also be known since they can be derived via regression equations for \( \rho_t = f(C_{m,t}) \)

Finding the Mass of Init-Sol

  1. Given: volume of fin-sol

    From Eq.M2 we get: $$ \rho'_t V'_t = \frac {\rho''_t V''_t C''_{m,t}} {C'_{m,t}} $$ $$ m'_t = \frac {\rho''_t V''_t C''_{m,t}} {C'_{m,t}} $$

  2. Given: mass of fin-sol

    From Eq.M1 we get: $$ m'_t = \frac {m''_t C''_{m,t}} {C'_{m,t}} $$

  3. Given: volume of init-sol

    Eq.5 gives us: $$ m'_t = \rho'_t V'_t $$

Finding the Mass of Water to be Added

By definition the mass of additional water = difference between the masses of fin-sol and init sol: $$ m_{H2O,t} = m''_t - m'_t $$ Equivalently we have: $$ m_{H2O,t} = \rho''_t V''_t - \rho'_t V'_t $$

  1. Given: volume of fin-sol and mass of init-sol

    $$ m_{H2O,t} = \rho''_t V''_t - m'_t $$

  2. Given: mass of init-sol

    From Eq.M2 we get: $$ \rho''_t V''_t = \frac {\rho'_t V'_t C'_{m,t}} {C''_{m,t}} $$

    Substituting: $$ m_{H2O,t} = \frac {\rho'_t V'_t C'_{m,t}} {C''_{m,t}} - \rho'_t V'_t $$ $$ m_{H2O,t} = \rho'_t V'_t \left ( \frac {C'_{m,t}}{C''_{m,t}} - 1 \right ) $$ $$ m_{H2O,t} = m'_t \left ( \frac {C'_{m,t}}{C''_{m,t}} - 1 \right ) $$

Finding the Volume of Water to be Added

$$ V_{H2O,t} = \frac {m_{H2O,t}} {\rho_{H2O,t}} $$

Finding Volume Loss Due to Contraction

Volume loss as a fraction of the sum of the volumes of init-sol and added water: $$ 1- \frac {V''_t} {V'_t + V_{H2O,t}} $$ Multiplying by 100 gives volume loss as a percentage.

If the result is negative then volume has expanded: \( V''_t > V'_t + V_{H2O,t} \) This occurs when \( V_{H2O,t} \gg V'_t \)

Computed Constants

The Relation Between Alcohol v/v and w/w Concentrations

From Eq.7 we get: $$ V_{100\%,t} = \frac {m_{100\%,t}} {\rho_{100\%,t}} $$

From Eq.1 we get: $$ m_{100\%,t} = {m'_t} C'_{m,t} $$

From Eq.2 we get: $$ m_{100\%,t} = {m''_t} C''_{m,t} $$

Therefore, we obtain: $$ V_{100\%,t} = \frac {{m'_t} C'_{m,t}} {\rho_{100\%,t}} = \frac {{m''_t} C''_{m,t}} {\rho_{100\%,t}} $$

Eq.3 and Eq.4 give us: $$ C'_{V,t} = \frac {V_{100\%,t}} {V'_t} $$ $$ C''_{V,t} = \frac {V_{100\%,t}} {V''_t} $$

Substituting we get: $$ C'_{V,t} = \frac { \left ( \frac {{m'_t} C'_{m,t}} {\rho_{100\%,t}} \right) } {V'_t} = \frac { {m'_t} C'_{m,t}} {\rho_{100\%,t} V'_t} $$ $$ C''_{V,t} = \frac { \left ( \frac {{m''_t} C''_{m,t}} {\rho_{100\%,t}} \right ) } {V''_t} = \frac {{m''_t} C''_{m,t}} {\rho_{100\%,t} V''_t} $$

From Eq.5 and Eq.6 we get: $$ \rho'_t = \frac {m'_t}{V'_t} $$ $$ \rho''_t = \frac {m''_t}{V''_t} $$

Substituting we get: $$ C'_{V,t} = \frac { \rho'_t C'_{m,t}} {\rho_{100\%,t}} $$ $$ C''_{V,t} = \frac {\rho''_t C''_{m,t}} {\rho_{100\%,t}} $$

We can generalize the above equations as: $$ C_{V,t} = \frac { \rho_t C_{m,t}} {\rho_{100\%,t}} \tag{C1} $$

Eq.C1 is used to convert from w/w to v/v concentration and vice versa using density values from alcoholometric tables (from which polynomial regression equations for \( C_{m,t} = f(C_{V,t}) \) are obtained).

Polynomial Regression Equations for \( C_{m,t} = f(C_{V,t}) \) and \( \rho_t = f(C_{m,t}) \)

To create a table of corresponding w/w - v/v conc. at particular temperatures, Eq.C1 was applied to density values (from alcoholometric tables) in terms of w/w conc.

Detailed alcoholometric data are available for ethanol and therefore tables for density as a function of w/w conc. was used to obtain corresponding v/v conc. values for temperatures of 15, 20, 25, 30, and 35°C.

Only one table for isopropanol could be found which lists densities at various w/w conc. but only for temperatures of 0, 15, 20, and 30°C. Density values were therefore interpolated for 25°C and extrapolated for 35°C using data for 20 and 30°C. Eq.C1 was then used to obtain the corresponding v/v conc. for temperatures of 15, 20, 25, 30, and 35°C.

The calculated values above were then fed to a polynomial regression calculator to obtain equations for w/w conc. as a function of v/v conc. for various temperatures.

Using the same tables as above, equations for density as a function of w/w concentration were obtained using the same regression calculator.

Isopropanol \( C_{m,t} = f(C_{V,t}) \)

Using data from an alcoholometric table, density values for 25 and 35°C were obtained through interpolation and extrapolation of data for 20 and 30°C.

\( C_{V,t} \) values were then computed using Eq.C1 for temperatures of 15, 20, 25, 30, and 35°C. \( C_{m,t} \) range was from 30%w/w to 100%w/w in increments of 1%.

The following equations for \( C_{m,t} \) were then obtained using polynomial regression analysis using the values for \( C_{V,t} \) and \( C_{m,t} \) obtained above. Coefficient of determination \( R^2 > 0.999999 \)

\(\ C_{m,15°C} = 0.18611877237610175 - 1.1654496420442664C_{V,15°C} + 8.453804361680312C^2_{V,15°C} \) \(\ - 18.837457942418727C^3_{V,15°C} + 23.81193022954337C^4_{V,15°C} \) \(\ - 15.755209244329187C^5_{V,15°C} + 4.30632611030398C^6_{V,15°C} \)

\(\ C_{m,20°C} = -0.20690345525202378 + 3.0050151936546583C_{V,20°C} - 9.498803283454661C^2_{V,20°C} \) \(\ + 21.263047408577382C^3_{V,20°C} - 25.309092418431906C^4_{V,20°C} \) \(\ + 15.610183102917432C^5_{V,20°C} - 3.8633707325934425C^6_{V,20°C} \)

\(\ C_{m,25°C} = 0.014540379974508398 + 0.6719431851731379C_{V,25°C} + 0.43919513783361563C^2_{V,25°C} \) \(\ - 0.6916968817401634C^3_{V,25°C} + 1.2565801579169842C^4_{V,25°C} \) \(\ - 1.1193577377099946C^5_{V,25°C} + 0.42865327131693126C^6_{V,25°C} \)

\(\ C_{m,30°C} = 0.2479276131479107 - 1.7788644006822556C_{V,30°C} + 10.848061992142636C^2_{V,30°C} \) \(\ - 23.62525994197691C^3_{V,30°C} + 28.93870122421419C^4_{V,30°C} \) \(\ - 18.512130742272536C^5_{V,30°C} + 4.881165018878908C^6_{V,30°C} \)

\(\ C_{m,35°C} = 0.49333593354528527 - 4.3477970320004085C_{V,35°C} + 21.727826678026474C^2_{V,35°C} \) \(\ - 47.534463875967035C^3_{V,35°C} + 57.729860605180455C^4_{V,35°C} \) \(\ - 36.561417900025404C^5_{V,35°C} + 9.491958302169577C^6_{V,35°C} \)

Ethanol \( C_{m,t} = f(C_{V,t} ) \)

Using data from alcoholometric tables, \( C_{V,t} \) values were first computed using Eq.C1 for temperatures of 15, 20, 25, 30, and 35°C. \( C_{m,t} \) range was from 30%w/w to 100%w/w in increments of 1%.

The following equations for \( C_{m,t} \) were then obtained using polynomial regression analysis using the values for \( C_{m,t} \) and \( C_{V,t} \) obtained above. Coefficient of determination \( R^2 > 0.999999 \).

\( C_{m,15°C} = 0.3465566932367186 - 2.7867516916298882C_{V,15°C} + 15.253566677638556C^2_{V,15°C} \) \( - 33.80023530105008C^3_{V,15°C} + 41.92884684315532C^4_{V,15°C} \) \( - 27.232809990231424C^5_{V,15°C} + 7.290508530857499C^6_{V,15°C} \)

\( C_{m,20°C} = 0.354163239042076 - 2.869214203422433C_{V,20°C} + 15.582350444879886C^2_{V,20°C} \) \( - 34.47412571991754C^3_{V,20°C} + 42.679592105999724C^4_{V,20°C} \) \( - 27.663879080836843C^5_{V,20°C} + 7.390807390189705C^6_{V,20°C} \)

\( C_{m,25°C} = 0.3670026743242395 - 3.0022390677766446C_{V,25°C} + 16.11016345509771C^2_{V,25°C} \) \( - 35.554771301523786C^3_{V,25°C} + 43.8849017132032C^4_{V,25°C} \) \( - 28.357922542432014C^5_{V,25°C} + 7.552556607231511C^6_{V,25°C} \)

\( C_{m,30°C} = 0.37362525016741066 - 3.0692406088807953C_{V,30°C} + 16.356012177893817C^2_{V,30°C} \) \( - 36.01234868129796C^3_{V,30°C} + 44.33664445765785C^4_{V,30°C} \) \( - 28.577396976614754C^5_{V,30°C} + 7.592374182581728C^6_{V,30°C} \)

\( C_{m,35°C} = 0.3873381051766422 - 3.2048244882817447C_{V,35°C} + 16.87337220868026C^2_{V,35°C} \) \( - 37.03151779779187C^3_{V,35°C} + 45.42691263265177C^4_{V,35°C} \) \( - 29.1745385281625C^5_{V,35°C} + 7.722857018182701C^6_{V,35°C} \)

Isopropanol \( \rho_t = f(C_{m,t}) \)

In the alcohol calculators the density values of isopropanol aqueous solutions are computed as a function of \( C_{m,t} \)

Using data from an alcoholometric table, density values for 25 and 35°C were derived through interpolation and extrapolation, respectively, of data for 20 and 30°C.

The following equations for density were then obtained using polynomial regression analysis for \( C_{m,t} \) from 30%w/w to 100%w/w in increments of 1% for temperatures of 15, 20, 25, 30, and 35°C. Coefficients of determination \( R^2 > 0.9999 \)

\( \rho_{15°C} = 0.9936843779301617 - 0.013592091801382409C_{m,15°C} - 0.5344205148363754C^2_{m,15°C} \) \( + 0.5704719057064189C^3_{m,15°C} - 0.22709596286929676C^4_{m,15°C} \)

\( \rho_{20°C} = 0.9858784444373024 + 0.018461500230157968C_{m,20°C} - 0.5875733839794985C^2_{m,20°C} \) \( + 0.5727953713341042C^3_{m,20°C} - 0.20468649016693682C^4_{m,20°C} \)

\( \rho_{25°C} = 0.9894312233029401 - 0.031027161995539194C_{m,25°C} - 0.4781726682425268C^2_{m,25°C} \) \( + 0.47684905890001916C^3_{m,25°C} - 0.17599507079846727^4C_{m,25°C} \)

\( \rho_{30°C} = 0.9929840021685773 - 0.0805158242212347C_{m,30°C} - 0.36877195250555916C^2_{m,30°C} \) \( + 0.3809027464659384C^3_{m,30°C} - 0.14730365142999938C^4_{m,30°C} \)

\( \rho_{35°C} = 0.9965367810342147 - 0.1300044864469307C_{m,35°C} - 0.2593712367685903C^2_{m,35°C} \) \( + 0.28495643403185644C^3_{m,35°C} - 0.11861223206153099C^4_{m,35°C} \)

Ethanol \( \rho_t = f(C_{m,t}) \)

In the alcohol calculators the density values of isopropanol aqueous solutions are computed as a function of \( C_{m,t} \)

Using data from alcoholometric tables, the following equations for density were obtained using polynomial regression analysis for \( C_{m,t} \) from 30%w/w to 100%w/w in increments of 1% for temperatures of 15, 20, 25, 30, and 35°C. Coefficient of determination \( R^2 > 0.99999 \).

\( \rho_{15°C} = 0.9664881317059026 + 0.14986649233581079C_{m,15°C} - 0.8220218752496306C^2_{m,15°C} \) \( + 0.8098296128082298C^3_{m,15°C} - 0.31051862078965836C^4_{m,15°C} \)

\( \rho_{20°C} = 0.9690755073150866 + 0.11575810563718208C_{m,20°C} - 0.7542800757698563C^2_{m,20°C} \) \( + 0.7476802900377703C^3_{m,20°C} - 0.28884956335859774C^4_{m,20°C} \)

\( \rho_{25°C} = 0.9712308871587023 + 0.0835229240561932C_{m,25°C} - 0.6898473031170309C^2_{m,25°C} \) \( + 0.6878753155009547C^3_{m,25°C} - 0.2676668418810413C^4_{m,25°C} \)

\( \rho_{30°C} = 0.9726387036273973 + 0.05541514312706141C_{m,30°C} - 0.6342950513951708C^2_{m,30°C} \) \( + 0.6361735375820552C^3_{m,30°C} - 0.24909454346326781C^4_{m,30°C} \)

\( \rho_{35°C} = 0.9731998196119197 + 0.03199135531545214C_{m,35°C} - 0.5886979727179072C^2_{m,35°C} \) \( + 0.5934477175931433C^3_{m,35°C} - 0.23339509763450106C^4_{m,35°C} \)

Alcoholometric Tables

Sources: isopropanol table and ethanol table

ISOPROPANOL
Isopropanol Concentration
w/w
Density (kg/liter or grams/mL)
NOTE: Isopropanol density values for 25°C and 35°C are interpolated and extrapolated, respectively, from the density values for 20°C and 30°C.
Computed v/v Concentration Using Eq.C1
15°C 20°C 25°C 30°C 35°C 15°C 20°C 25°C 30°C 35°C
0.30 0.95493 0.952 0.9483 0.9446 0.9409 0.36305 0.36364 0.36417 0.36471 0.36526
0.31 0.953 0.95 0.9463 0.9426 0.9389 0.37439 0.37497 0.37552 0.37607 0.37663
0.32 0.951 0.9481 0.9443 0.9405 0.9367 0.38565 0.38629 0.38681 0.38734 0.38787
0.33 0.9489 0.946 0.94215 0.9383 0.93445 0.39683 0.39748 0.39799 0.39851 0.39903
0.34 0.9468 0.944 0.94005 0.9361 0.93215 0.40795 0.40866 0.40914 0.40962 0.41011
0.35 0.9446 0.9419 0.93785 0.9338 0.92975 0.41897 0.41974 0.42018 0.42063 0.42108
0.36 0.9424 0.9399 0.9357 0.9315 0.9273 0.42994 0.43082 0.43120 0.43158 0.43197
0.37 0.9401 0.9377 0.93345 0.9292 0.92495 0.44080 0.44175 0.44211 0.44248 0.44285
0.38 0.9379 0.9355 0.9312 0.9269 0.9226 0.45166 0.45262 0.45296 0.45331 0.45366
0.39 0.9356 0.9333 0.92895 0.9246 0.92025 0.46241 0.46344 0.46376 0.46408 0.46441
0.40 0.9333 0.931 0.9267 0.9224 0.9181 0.47310 0.47415 0.47450 0.47485 0.47521
0.41 0.9311 0.9287 0.9244 0.9201 0.9158 0.48378 0.48481 0.48516 0.48551 0.48587
0.42 0.9288 0.9264 0.92205 0.9177 0.91335 0.49436 0.49540 0.49573 0.49605 0.49639
0.43 0.9266 0.9239 0.91965 0.9154 0.91115 0.50493 0.50583 0.50621 0.50659 0.50698
0.44 0.9243 0.9215 0.91725 0.913 0.90875 0.51539 0.51625 0.51663 0.51701 0.51740
0.45 0.922 0.9191 0.91485 0.9106 0.90635 0.52579 0.52660 0.52699 0.52737 0.52777
0.46 0.9197 0.9165 0.91235 0.9082 0.90405 0.53613 0.53678 0.53723 0.53767 0.53813
0.47 0.9174 0.9141 0.91 0.9059 0.9018 0.54642 0.54702 0.54749 0.54797 0.54845
0.48 0.915 0.9117 0.90765 0.9036 0.89955 0.55658 0.55719 0.55770 0.55821 0.55873
0.49 0.9127 0.9093 0.9053 0.9013 0.8973 0.56675 0.56730 0.56784 0.56839 0.56894
0.50 0.9104 0.9069 0.90295 0.899 0.89505 0.57686 0.57735 0.57792 0.57851 0.57910
0.51 0.9081 0.9044 0.9005 0.8966 0.8927 0.58691 0.58727 0.58788 0.58850 0.58913
0.52 0.9058 0.902 0.89815 0.8943 0.89045 0.59690 0.59720 0.59785 0.59850 0.59916
0.53 0.9035 0.8996 0.89575 0.8919 0.88805 0.60684 0.60706 0.60772 0.60837 0.60904
0.54 0.9011 0.8971 0.8933 0.8895 0.8857 0.61664 0.61680 0.61749 0.61819 0.61889
0.55 0.8988 0.8946 0.89085 0.8871 0.88335 0.62646 0.62647 0.62720 0.62793 0.62868
0.56 0.8964 0.8921 0.8884 0.8847 0.881 0.63615 0.63608 0.63685 0.63762 0.63841
0.57 0.894 0.8896 0.88595 0.8823 0.87865 0.64577 0.64562 0.64643 0.64725 0.64807
0.58 0.8917 0.8874 0.8837 0.88 0.8763 0.65541 0.65532 0.65610 0.65689 0.65768
0.59 0.8893 0.885 0.88135 0.8777 0.87405 0.66492 0.66482 0.66564 0.66646 0.66730
0.60 0.8869 0.8825 0.87885 0.8752 0.87155 0.67436 0.67418 0.67500 0.67583 0.67667
0.61 0.8845 0.88 0.8764 0.8728 0.8692 0.68375 0.68347 0.68434 0.68521 0.68609
0.62 0.8821 0.8776 0.874 0.8704 0.8668 0.69307 0.69278 0.69365 0.69453 0.69541
0.63 0.8798 0.8751 0.87155 0.868 0.86445 0.70241 0.70195 0.70286 0.70378 0.70471
0.64 0.8775 0.8727 0.86915 0.8656 0.86205 0.71170 0.71114 0.71205 0.71298 0.71391
0.65 0.8752 0.8702 0.86665 0.8631 0.85955 0.72092 0.72018 0.72110 0.72203 0.72297
0.66 0.8728 0.8679 0.8643 0.8607 0.8571 0.73001 0.72933 0.73021 0.73110 0.73200
0.67 0.8705 0.8656 0.86195 0.8583 0.85465 0.73911 0.73842 0.73926 0.74010 0.74096
0.68 0.8682 0.8632 0.85955 0.8559 0.85225 0.74816 0.74736 0.74820 0.74905 0.74991
0.69 0.8658 0.8609 0.8572 0.8535 0.8498 0.75707 0.75633 0.75713 0.75793 0.75875
0.70 0.8634 0.8584 0.85475 0.8511 0.84745 0.76591 0.76506 0.76591 0.76676 0.76762
0.71 0.8611 0.856 0.85235 0.8487 0.84505 0.77478 0.77382 0.77467 0.77552 0.77638
0.72 0.8588 0.8537 0.85005 0.8464 0.84275 0.78360 0.78261 0.78346 0.78431 0.78517
0.73 0.8564 0.8513 0.84765 0.844 0.84035 0.79226 0.79125 0.79209 0.79295 0.79381
0.74 0.8541 0.8489 0.84525 0.8416 0.83795 0.80096 0.79983 0.80067 0.80152 0.80238
0.75 0.8517 0.8464 0.8428 0.8392 0.8356 0.80950 0.80825 0.80914 0.81004 0.81095
0.76 0.8493 0.8439 0.84035 0.8368 0.83325 0.81798 0.81661 0.81754 0.81849 0.81945
0.77 0.847 0.8415 0.83795 0.8344 0.83085 0.82650 0.82500 0.82594 0.82688 0.82784
0.78 0.8446 0.8391 0.8356 0.8321 0.8286 0.83486 0.83333 0.83432 0.83531 0.83632
0.79 0.8422 0.8366 0.83315 0.8297 0.82625 0.84316 0.84150 0.84254 0.84358 0.84464
0.80 0.83979 0.8342 0.83075 0.8273 0.82385 0.85139 0.84971 0.85074 0.85179 0.85285
0.81 0.8374 0.8317 0.82825 0.8248 0.82135 0.85958 0.85775 0.85878 0.85983 0.86089
0.82 0.835 0.8292 0.8258 0.8224 0.819 0.86770 0.86573 0.86682 0.86791 0.86902
0.83 0.8326 0.8268 0.8234 0.82 0.8166 0.87575 0.87375 0.87484 0.87593 0.87704
0.84 0.8302 0.8243 0.8209 0.8175 0.8141 0.88375 0.88160 0.88269 0.88378 0.88489
0.85 0.8278 0.8219 0.8185 0.8151 0.8117 0.89169 0.88950 0.89058 0.89168 0.89279
0.86 0.8254 0.8194 0.81605 0.8127 0.80935 0.89956 0.89723 0.89837 0.89951 0.90067
0.87 0.8229 0.8169 0.81355 0.8102 0.80685 0.90727 0.90489 0.90603 0.90717 0.90833
0.88 0.8205 0.8145 0.81115 0.8078 0.80445 0.91502 0.91261 0.91374 0.91488 0.91604
0.89 0.818 0.812 0.80865 0.8053 0.80195 0.92260 0.92014 0.92127 0.92242 0.92357
0.90 0.8155 0.8096 0.80625 0.8029 0.79955 0.93011 0.92773 0.92886 0.93000 0.93115
0.91 0.813 0.8072 0.8038 0.8004 0.797 0.93756 0.93526 0.93633 0.93741 0.93850
0.92 0.8104 0.8047 0.8013 0.7979 0.7945 0.94483 0.94261 0.94367 0.94475 0.94583
0.93 0.8079 0.8023 0.79885 0.7954 0.79195 0.95216 0.95001 0.95101 0.95202 0.95305
0.94 0.8052 0.7998 0.79635 0.7929 0.78945 0.95918 0.95723 0.95823 0.95924 0.96025
0.95 0.8026 0.7973 0.79385 0.7904 0.78695 0.96625 0.96439 0.96538 0.96638 0.96739
0.96 0.7999 0.7949 0.79135 0.7878 0.78425 0.97314 0.97161 0.97247 0.97334 0.97422
0.97 0.7972 0.7925 0.78885 0.7852 0.78155 0.97996 0.97877 0.97950 0.98024 0.98098
0.98 0.7945 0.7901 0.78635 0.7826 0.77885 0.98671 0.98586 0.98646 0.98706 0.98767
0.99 0.7918 0.7877 0.7838 0.7799 0.776 0.99339 0.99290 0.99329 0.99369 0.99410
1.00 0.7891 0.7854 0.7812 0.777 0.7728 1.00000 1.00000 1.00000 1.00000 1.00000
ETHANOL
Ethanol Concentration
w/w
Density (kg/liter or grams/mL) Computed v/v Concentration Using Eq.C1
15°C 20°C 25°C 30°C 35°C 15°C 20°C 25°C 30°C 35°C
0.30 0.95682 0.95378 0.95063 0.94737 0.94399 0.36174 0.36254 0.36332 0.36407 0.36480
0.31 0.95521 0.95209 0.94887 0.94553 0.94209 0.37317 0.37396 0.37474 0.37547 0.37620
0.32 0.95355 0.95036 0.94706 0.94367 0.94017 0.38454 0.38533 0.38609 0.38682 0.38754
0.33 0.95185 0.94858 0.94522 0.94177 0.93821 0.39585 0.39662 0.39738 0.39811 0.39882
0.34 0.95010 0.94677 0.94335 0.93983 0.93623 0.40710 0.40786 0.40861 0.40933 0.41004
0.35 0.94831 0.94492 0.94144 0.93787 0.93422 0.41828 0.41904 0.41978 0.42049 0.42119
0.36 0.94648 0.94303 0.93949 0.93588 0.93218 0.42940 0.43015 0.43088 0.43158 0.43228
0.37 0.94462 0.94111 0.93752 0.93386 0.93012 0.44046 0.44120 0.44192 0.44262 0.44331
0.38 0.94271 0.93915 0.93551 0.93181 0.92803 0.45145 0.45218 0.45289 0.45358 0.45427
0.39 0.94077 0.93716 0.93348 0.92973 0.92592 0.46238 0.46309 0.46380 0.46448 0.46516
0.40 0.93880 0.93515 0.93142 0.92764 0.92379 0.47324 0.47395 0.47464 0.47532 0.47599
0.41 0.93679 0.93310 0.92934 0.92552 0.92164 0.48403 0.48473 0.48542 0.48609 0.48675
0.42 0.93476 0.93103 0.92724 0.92338 0.91947 0.49476 0.49545 0.49613 0.49679 0.49745
0.43 0.93270 0.92894 0.92511 0.92122 0.91729 0.50543 0.50611 0.50678 0.50743 0.50809
0.44 0.93062 0.92682 0.92296 0.91905 0.91508 0.51603 0.51670 0.51736 0.51801 0.51865
0.45 0.92851 0.92469 0.92080 0.91686 0.91287 0.52656 0.52723 0.52788 0.52852 0.52916
0.46 0.92638 0.92253 0.91862 0.91465 0.91064 0.53703 0.53769 0.53833 0.53896 0.53960
0.47 0.92424 0.92037 0.91643 0.91244 0.90839 0.54743 0.54809 0.54873 0.54935 0.54996
0.48 0.92208 0.91818 0.91422 0.91021 0.90614 0.55777 0.55842 0.55905 0.55966 0.56028
0.49 0.91990 0.91598 0.91200 0.90796 0.90388 0.56805 0.56869 0.56931 0.56991 0.57052
0.50 0.91771 0.91377 0.90977 0.90571 0.90160 0.57826 0.57889 0.57951 0.58010 0.58070
0.51 0.91551 0.91155 0.90753 0.90345 0.89932 0.58841 0.58904 0.58964 0.59023 0.59081
0.52 0.91329 0.90931 0.90527 0.90118 0.89703 0.59849 0.59911 0.59971 0.60029 0.60086
0.53 0.91106 0.90707 0.90301 0.89890 0.89473 0.60851 0.60913 0.60971 0.61028 0.61085
0.54 0.90882 0.90481 0.90074 0.89661 0.89242 0.61847 0.61907 0.61966 0.62021 0.62077
0.55 0.90658 0.90255 0.89846 0.89431 0.89011 0.62837 0.62896 0.62953 0.63008 0.63063
0.56 0.90432 0.90028 0.89617 0.89201 0.88779 0.63820 0.63879 0.63935 0.63988 0.64042
0.57 0.90205 0.89799 0.89388 0.88970 0.88546 0.64797 0.64854 0.64910 0.64962 0.65014
0.58 0.89977 0.89570 0.89157 0.88738 0.88313 0.65767 0.65824 0.65878 0.65930 0.65981
0.59 0.89749 0.89340 0.88926 0.88506 0.88079 0.66731 0.66787 0.66840 0.66891 0.66941
0.60 0.89520 0.89110 0.88694 0.88272 0.87845 0.67689 0.67744 0.67796 0.67845 0.67894
0.61 0.89289 0.88878 0.88461 0.88038 0.87610 0.68640 0.68693 0.68745 0.68793 0.68841
0.62 0.89058 0.88646 0.88228 0.87804 0.87374 0.69584 0.69637 0.69688 0.69735 0.69781
0.63 0.88827 0.88413 0.87994 0.87568 0.87137 0.70523 0.70574 0.70624 0.70669 0.70714
0.64 0.88594 0.88179 0.87759 0.87332 0.86900 0.71455 0.71505 0.71553 0.71597 0.71641
0.65 0.88361 0.87945 0.87523 0.87096 0.86663 0.72380 0.72429 0.72476 0.72520 0.72562
0.66 0.88127 0.87709 0.87287 0.86858 0.86424 0.73299 0.73346 0.73392 0.73434 0.73476
0.67 0.87892 0.87473 0.87050 0.86620 0.86186 0.74212 0.74257 0.74302 0.74342 0.74383
0.68 0.87656 0.87237 0.86812 0.86382 0.85946 0.75117 0.75162 0.75205 0.75245 0.75283
0.69 0.87420 0.86999 0.86573 0.86142 0.85706 0.76016 0.76060 0.76101 0.76139 0.76177
0.70 0.87183 0.86761 0.86334 0.85902 0.85465 0.76909 0.76951 0.76991 0.77027 0.77064
0.71 0.86945 0.86522 0.86094 0.85662 0.85224 0.77795 0.77835 0.77873 0.77909 0.77944
0.72 0.86706 0.86283 0.85854 0.85420 0.84982 0.78674 0.78713 0.78750 0.78784 0.78818
0.73 0.86467 0.86043 0.85613 0.85178 0.84739 0.79546 0.79585 0.79620 0.79651 0.79684
0.74 0.86227 0.85802 0.85371 0.84936 0.84495 0.80412 0.80449 0.80482 0.80513 0.80543
0.75 0.85986 0.85560 0.85129 0.84693 0.84251 0.81271 0.81306 0.81339 0.81368 0.81396
0.76 0.85745 0.85317 0.84885 0.84449 0.84007 0.82124 0.82156 0.82187 0.82215 0.82242
0.77 0.85502 0.85074 0.84641 0.84204 0.83761 0.82969 0.83000 0.83029 0.83055 0.83080
0.78 0.85258 0.84830 0.84397 0.83958 0.83515 0.83806 0.83837 0.83865 0.83888 0.83912
0.79 0.85014 0.84585 0.84151 0.83712 0.83268 0.84638 0.84666 0.84692 0.84715 0.84736
0.80 0.84768 0.84339 0.83904 0.83465 0.83020 0.85461 0.85489 0.85513 0.85534 0.85553
0.81 0.84521 0.84091 0.83656 0.83216 0.82771 0.86277 0.86303 0.86326 0.86345 0.86363
0.82 0.84273 0.83843 0.83407 0.82967 0.82521 0.87086 0.87111 0.87131 0.87149 0.87165
0.83 0.84024 0.83593 0.83157 0.82716 0.82270 0.87888 0.87910 0.87930 0.87945 0.87960
0.84 0.83772 0.83341 0.82905 0.82464 0.82018 0.88680 0.88701 0.88719 0.88733 0.88747
0.85 0.83519 0.83088 0.82651 0.82210 0.81764 0.89465 0.89485 0.89500 0.89513 0.89525
0.86 0.83264 0.82832 0.82396 0.81955 0.81509 0.90241 0.90258 0.90274 0.90285 0.90296
0.87 0.83007 0.82575 0.82139 0.81698 0.81252 0.91008 0.91025 0.91039 0.91049 0.91058
0.88 0.82747 0.82315 0.81879 0.81439 0.80993 0.91766 0.91781 0.91794 0.91803 0.91811
0.89 0.82485 0.82053 0.81617 0.81177 0.80733 0.92515 0.92528 0.92540 0.92548 0.92556
0.90 0.82220 0.81788 0.81353 0.80913 0.80470 0.93254 0.93266 0.93277 0.93283 0.93291
0.91 0.81952 0.81521 0.81085 0.80647 0.80204 0.93983 0.93994 0.94003 0.94010 0.94016
0.92 0.81681 0.81249 0.80815 0.80377 0.79936 0.94701 0.94710 0.94719 0.94725 0.94732
0.93 0.81407 0.80975 0.80541 0.80104 0.79665 0.95410 0.95417 0.95424 0.95429 0.95437
0.94 0.81128 0.80697 0.80263 0.79827 0.79390 0.96105 0.96112 0.96117 0.96122 0.96130
0.95 0.80845 0.80414 0.79981 0.79547 0.79110 0.96789 0.96793 0.96798 0.96803 0.96810
0.96 0.80558 0.80127 0.79695 0.79261 0.78827 0.97460 0.97463 0.97468 0.97471 0.97479
0.97 0.80266 0.79836 0.79404 0.78971 0.78538 0.98119 0.98121 0.98123 0.98126 0.98133
0.98 0.79968 0.79538 0.79107 0.78676 0.78243 0.98762 0.98762 0.98764 0.98767 0.98773
0.99 0.79663 0.79235 0.78805 0.78374 0.77941 0.99389 0.99390 0.99391 0.99392 0.99395
1.00 0.79351 0.78924 0.78495 0.78065 0.77631 1.00000 1.00000 1.00000 1.00000 1.00000